Answer:
3.00 moles of Lithium bromide will be produced
Explanation:
The reaction that takes place is:
By looking at the reaction equation, we can see that<em> the reaction of 1 mol of lithium hydroxide (LiOH) produces 1 mol of lithium bromide (LiBr).</em> Thus, 3.00 moles of LiOH would conversely produce 3.00 moles of LiBr.
Answer:
74,67 gr/mol
Explanation:
At STP 1 mole of an ideal gas has volume of 22,4 L. Since we know the volume of the gas we can find the number of moles of the gas. (300 mL=0,3 L)
n=0,3L/22,4 L=0,01339 mol
Since we know weight of the gas as 1 g, we can find the molecular weight as;
MW=1 g/0,01339 mol =74,67 gr/mol
Explanation:
The transuranium elements are produced by the capture of neutrons
<u>Hope</u><u> </u><u>it</u><u> </u><u>will</u><u> </u><u>help</u><u> </u><u>you</u>
we can differentiate a heterozygous individual from a homozygote by analyzing their alleles. If the alleles in the homologous chromosomes are the same, we say that it is a homozygote. If the alleles are different, the individual is heterozygous.
<u>Answer: </u>The amount of heat released is 84 calories.
<u>Explanation:
</u>
The equation used to calculate the amount of heat released or absorbed, we use the equation:

where,
Q = heat gained or released = ? Cal
m = mass of the substance = 10g
c = specific heat of aluminium = 0.21 Cal/g ° C
Putting values in above equation, we get:
Q = -84 Calories
Hence, the amount of heat released is 84 calories.