I think this is what you're after:
Cs(g) → Cs^+ + e⁻ ΔHIP = 375.7 kJ mol^-1 [1]
Convert to J and divide by the Avogadro Const to give E in J per photon
E = 375700/6.022×10^23 = 6.239×10^-19 J
Plank relationship E = h×ν E in J ν = frequency (Hz s-1)
Planck constant h = 6.626×10^-34 J s
6.239×10^-19 = (6.626×10^-34)ν
ν = 9.42×10^14 s^-1 (Hz)
IP are usually given in ev Cs 3.894 eV
<span>E = 3.894×1.60×10^-19 = 6.230×10^-19 J per photon </span>
Answer:
Yes
Explanation:
By definition, the equilibrium constanct, Kc, for the reaction A ⇒ 2B is
= [A]^1 / [B]^2
Substitute [A] = 4 and [B] = 2 in the equation,
[A]^1 / [B]^2
= 4^1 / 2^2
= 1
= Kc
So yes the reaction is at equilibrium.
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
When solid carbon reacts with oxygen gas to produce carbon dioxide gas. the deltaH (enthalpy change ) value is negative .DeltaH would be on the product side of the equation.
<h3>What is enthalpy change? </h3>
In a thermodynamic system, energy is measured by enthalpy. Enthalpy is a measure of a system's overall heat content and is equal to the system's internal energy plus the sum of its volume and pressure.
Knowing whether q is endothermic or exothermic allows one to characterise the relationship between q and H. An endothermic reaction is one that absorbs heat and demonstrates that heat from the environment is used in the reaction, hence q>0 (positive). For the aforementioned equation, under constant pressure and temperature, if q is positive, then H will also be positive. In a similar manner, heat is transferred to the environment when it is released during an exothermic reaction. Thus, q=0 (negative). Therefore, if q is negative, H will also be negative.
Learn more about enthalpy change here :
brainly.com/question/1445358
#SPJ13
N2 + 3H2 ----> 2NH3
<span>you can see 3 moles H2 reacts to form 2 moles NH3 </span>
<span>Therefore moles NH3 = 2 / 3 x moles H2 </span>
<span>= 2/3 x 12.0 mol </span>
<span>= 8.00 mol NH3 hope this help</span>