Impulse = Force * times and also Impulse = change in momentum.
Given that the mass does not change, change if momentum = mass * (final velocity - initial velocity)
Given that you know mass and initial velocity (which is the velicity before the cart hits the wall) you need the final velocity (which is the velocity after the cart hits the wall).
Answer: the velocity of the cart after it hits the wall.
Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k

Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N
Answer:
When equal and opposite forces meet each other, it results in motion and they would repel away from each other, causing the asteroid to be sent away from the earth.
Explanation:
Newton's Third Law states that every action has an equal and opposite reaction.