Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g
False because the Atlantic Ocean dose not have active volcanoes besides that’s a ocean so no
Partial pressure of gas A is 1.31 atm and that of gas B is 0.44 atm.
The partial pressure of a gas in a mixture can be calculated as
Pi = Xi x P
Where Pi is the partial pressure; Xi is mole fraction and P is the total pressure of the mixture.
Therefore we have Pa = Xa x P and Pb = Xb x P
Let us find Xa and Xb
Χa = mol a/ total moles = 2.50/(2.50+0.85) = 2.50/3.35 = 0.746
Xb = mol b/total moles = 0.85/(2.50+0.85) = 0.85/3.35 = 0.254
Total pressure P is given as 1.75 atm
Pa = Xa x P = 0.746 x 1.75 = 1.31atm
Partial pressure of gas A is 1.31 atm
Pb = Xb x P = 0.254 x 1.75 = 0.44atm
Partial pressure of gas B is 0.44 atm.
Learn more about Partial pressure here:
brainly.com/question/15302032
#SPJ4
The concentration of the hydroxide ion given that the concentration of the hydronium ion 1.0 times 10^-14 M. The reverse mathematical method used to determine the pOH can be used to get the hydroxide ion concentration from the pOH. How many hydroxide ions are there in a solution with a pOH of 5.70, for instance.
Calculate 10-5.70, or "inverse" log, on a calculator (- 5.70). It indicates that one hydroxide ion is produced by one part of the NaOH solution. Because of this, the molar concentration of hydroxide ions in the solution is the same as the molar concentration of the NaOH.
To learn more about hydroxide, click here.
brainly.com/question/4251554
#SPJ4