Answer:
I’m pretty sure it’s Lions sleeping after a big meal
Explanation:
S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
<h3>How to calculate volume?</h3>
The volume of a gas at STP can be calculated using the direct proportion method.
According to this question, 50.75 g of a gas occupies 10.0 L at STP, then 129.3g of the same gas will occupy the following:
= 129.3 × 10/50.75
= 25.48L
Therefore, if 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
Answer:
option A is the correct answer .
Explanation:
as density = mass per unit volume
density = 7.5/2.5 = 3 gm / cm³ ..is the answer ...
pls mark my answer as brainlist plzzzz and plz vote
Answer:
Potassium permanganate.
Explanation:
Both substances are dyes, but the methylene blue has a bigger molecular mass (319.85 g/mol), that means that the particles are bigger in comparison with the potassium permanganate that has a molecular mass of 158.034 g/mol.
Since the molar mass is the half in the case of potassium permanganate, it can be considered that the particle size is the half in size. In the agar, a smaller particle will present less resistance to flow, that means that it going to move faster.