Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
D. Destructive interference. An easy way to think about it is the waves are opposite each other, so they essentially cancel each other out, or make an effort to.
Answer:
Action - Pulling up the train.
Reaction - Friction on the locomotive
Explanation:
Locomotive is pulling the train upwards ,
Which is the action force applied by the locomotive,
As a reaction locomotive will be pulled by the train which is the reaction of pulling
Now, considering it as a action on locomotive , friction force will act on it as a reaction upwards which will result to move it upwards.
For train action is pulling up by locomotive and reaction will be friction acting on it downwards.
The satellites launch rockets to generate the force required to keep an orbit all around space station circular. The continuous centripetal force is maintained by the centripetal force.
<h3>What is a good illustration of gravity?</h3>
The energy holding the gases inside the sun. the power behind a ball's descent after being thrown into the air. the force that makes an automobile coast downward even when the gas is not depressed.
<h3>What makes anything gravitational?</h3>
Our term gravity and more specific derivation gravitation are derived from a Latin word gravity, from gravis, which itself is derived from a much older root word that is considered to have existed due to multiple cognates in closely related languages.
To know more about Gravitational visit:
brainly.com/question/3009841
#SPJ4