Answer:
OBr₂
Explanation:
<em>The ionic character depends on the difference of electronegativity between the elements. The higher ΔEN, the greater the ionic character.</em>
SBr₂
ΔEN = |EN(S)-EN(Br)| = |2.5-2.8| = 0.3
OBr₂
ΔEN = |EN(O)-EN(Br)| = |3.5-2.8| = 0.7
SeCl₂
ΔEN = |EN(Se)-EN(Cl)| = |2.4-3.0| = 0.6
TeI₂
ΔEN = |EN(Te)-EN(I)| = |2.1-2.5| = 0.4
SCl₂
ΔEN = |EN(S)-EN(Cl)| = |2.5-3.0| = 0.5
OBr₂ is the molecule with the most ionic character.
In the choices above, the correct letter of the question is letter a, scintillation counter. It is because it uses a phosphor-coated surface in order to use its function in detecting radiation. Its component could produce bright flashes where it will be sufficient in detecting the radiation.
The reaction is given as
Fe2O3 (s)+ 3CO(g)--->3CO2(g)+ 2Fe(s)
No.of moles=mass in gram/molar mass
As for Fe mole =156.2g/55.847=2.7969~2.797
The ratio b/w CO and Fe is 3:2
Moles of CO needed= 2.797x3/2=4.1955
Mass of CO needed= 4.195mol x 28.01g/mol= 117.515g