Answer:
3.45×10⁻⁴mm (or 0.000345mm)
Explanation:
Use a method called dimensional analysis here. It involves a chain of conversions, so we'll need some conversions to work with.
- 1nm = 1×10⁻⁹m
- 1mm = 1×10⁻³m
- 345nm; which is given
If you knew the conversion from nanometers to millimeters then you could just do it in one step. But I don't, so I won't. Anyways, you put the conversions into fraction form like so:
And then orient them in a way where multiplying the two (or more in other instances) gives you the units you want. In this cas it's millimeters so you'll have:
(345nm)•(1×10⁻⁹m/1nm)•(1mm/1×10⁻³m)
Notice how all the units reduce except for mm. From here you just multiply across and should get 345×10⁻⁶mm which simplifies to 3.45×10⁻⁴mm.
D is ur answer bc th ngeavtixe would pull the electric or
The density of an object remains same irrespective of its shape, size and quantity.
Explanation:
Density is an intensive property. This means that regardless of the object's shape, size, or quantity, the density of that substance will always be the same. Even if you cut the object into a million pieces, they would still each have the same density. It is because density in an intensive property of matter.
please mark brainliest