The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
Answer:
a tough, light, flexible synthetic resin made by polymerizing ethylene, chiefly used for plastic bags, food containers, and other packaging.
Explanation:
Answer:
d I think there's two answer
Explanation:
or c
We are given that the concentration of NaOH is 0.0003 M and are asked to calculate the pH
We know that NaOH dissociates by the following reaction:
NaOH → Na⁺ + OH⁻
Which means that one mole of NaOH produces one mole of OH⁻ ion, which is what we care about since the pH is affected only by the concentration of H⁺ and OH⁻ ions
Now that we know that one mole of NaOH produces one mole of OH⁻, 0.0003M NaOH will produce 0.0003M OH⁻
Concentration of OH⁻ (also written as [OH⁻]) = 3 * 10⁻⁴
<u>pOH of the solution:</u>
pOH = -log[OH⁻] = -log(3 * 10⁻⁴)
pOH = -0.477 + 4
pOH = 3.523
<u>pH of the solution:</u>
We know that the sum of pH and pOH of a solution is 14
pH + pOH = 14
pH + 3.523 = 14 [subtracting 3.523 from both sides]
pH = 10.477