The information that a foliated metamorphic rock provide about the conditions it was formed under are:(for many diffrent rocks like Phyllite and Amphibolite)
you can tell by its features like if its smooth and sleek or if its rough and bumpy those physical features.
Answer:
6.53g of K₂SO₄
Explanation:
Formula of the compound is K₂SO₄
Given parameters:
Volume of K₂SO₄ = 250mL = 250 x 10⁻³L
= 0.25L
Concentration of K₂SO₄ = 0.15M or 0. 15mol/L
Unknown:
Mass of K₂SO₄ =?
Methods:
We use the mole concept to solve this kind of problem.
>>First, we find the number of moles using the expression below:
Number of moles= concentration x volume
Solving for number of moles:
Number of moles = 0.25 x 01.5
= 0.0375mole
>>Secondly, we use the number of moles to find the mass of K₂SO₄ needed. This can be obtained using the expression below:
Mass(g) = number of moles x molar mass
Solving:
To find the molar mass of K₂SO₄, we must know the atomic mass of each element in the compound. This can be obtained using the periodic table.
For:
K = 39g
S = 32g
O = 16g
Molar mass of K₂SO₄ = (39x2) + 32 + (16x4)
= 78 +32 + 64
= 174g/mol
Using the expression:
Mass(g) = number of moles x molar mass
Mass of K₂SO₄ = 0.0375 x 174 = 6.53g
Gravitational force -an attractive force that exists between all objects with mass; an object with mass attracts another object with mass; the magnitude of the force is directly proportional to the masses of the two objects and inversely proportional to the square of the distance between the two objects.
Answer:
270g
Explanation:
Given parameters:
Concentration of NaOH = 1.5M
Volume = 4.5L
Unknown
Mass of NaOH added = ?
Solution:
To solve the problem, we need to find the number of moles of the NaOH first;
Number of moles = concentration x volume
Number of moles = 1.5 x 4.5 = 6.75mol
Now;
Mass = Number of moles x molar mass
Molar mass of NaOH = 23 + 16 + 1 = 40g/mol
Mass = 6.75 x 40 = 270g
Answer:
b. Add a few drops of one of the layers to a test tube containing 1 mL of water. Shake the test tube to determine the solubility of the layer in water
Explanation:
Option a is not true, it depends on the compound being extracted.
Option c is not true, although most of the solvents used in extractions have lower boiling point than water there are exceptions, for example toluene.
Option d is not true. Again most of the solvents used in extractions are less dense than water, there are many exceptions, for example chloroform, so for equal volumes the chloroform layer will weigh more.
Option b. is the correct one.
One will test the miscibility of the layer in water. If it inmiscible then one would know is the organic layer. If it is the aqueous layer then it will completely be miscible.