The definition of mechanical power is
Power = (work done) / (time to do the work).
From that definition, it looks pretty much like the power of a machine
depends on work and time.
Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4
The answer is D. This is because liquids take up the shape of the container they are in, so it is never definite. Where as solids stay the same shape.
Answer:
3.0 moles.
Explanation:
- It is a stichiometry problem.
- The chemical reaction of reacting hydrogen with oxygen to produce water is:
<em>H₂ + 1/2 O₂ → H₂O.</em>
- It is clear that <em><u>1.0 mole of H₂</u></em> reacts with 0.5 mole of O₂ to produce <u><em>1.0 mole of water</em></u>.
- The ratio of the reacting hydrogen to the produced water is 1:1.
∴ The number of moles of water created from reacting 3.0 moles of hydrogen completely with excess oxygen = 3.0 moles.
B. 272
I think because it's 3 sig figs