Answer:
v=10.75m/s
Explanation:
It is given that,
Pete drives 215 Meters in 20 seconds. He is driving down 7th floor. We need to find his speed.
Speed = distance/time
⇒

Hence, the speed of Pete is 10.75 m/s.
Answer:
<h2>
<em>Distance</em></h2>
<em>The </em><em>length</em><em> </em><em>of </em><em>the </em><em>actual </em><em>path </em><em>travelled by </em><em>a </em><em>body </em><em>is </em><em>called </em><em>distance </em><em>travelled </em><em>by </em><em>a </em><em>body.It </em><em>is </em><em>a </em><em>scalar </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em>
<h2>
<em>Displacement</em></h2>
<em>The </em><em>shortest </em><em>distance</em><em> </em><em>from </em><em>initial </em><em>position</em><em> </em><em>to </em><em>the </em><em>final </em><em>position</em><em> </em><em>of </em><em>a </em><em>body </em><em>is </em><em>called </em><em>displacement</em><em> </em><em>of </em><em>the </em><em>body.It </em><em>is </em><em>a </em><em>vector</em><em> </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em><em>.</em>
<em>Please </em><em>see </em><em>the </em><em>attached </em><em>picture.</em><em>.</em><em>.</em>
<em>It </em><em>is </em><em>the </em><em>example </em><em>of </em><em>distance </em><em>and </em><em>displacement.</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
Explanation:
hope this helps you dear friend.
To solve the exercise it is necessary to take into account the definition of speed as a function of distance and time, and the speed of air in the sound, as well

Where,
V= Velocity
d= distance
t = time
Re-arrange the equation to find the distance we have,
d=vt
Replacing with our values


It is understood that the sound comes and goes across the entire lake therefore, the length of the lake is half the distance found, that is



Therefore the length of the lake is 634,55m