1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
9

Apply what you know about forces to hypothesize how balanced and unbalanced forces acting on a moving car would affect the motio

n of the car.
Physics
1 answer:
rosijanka [135]3 years ago
7 0
If an object<span> has a net </span>force<span> acting on it, it will accelerate. The </span>object<span> will speed up, slow down or change direction. An </span>unbalanced force<span> (net </span>force<span>) acting on an </span>object<span>changes its speed and/or direction of motion. An </span>unbalanced force<span> is an unopposed</span>force<span> that causes a change in motion.
thus the car would get its speed, and or direction mixed up</span>
You might be interested in
it takes 90 j of work to stretch a spring 0.2 m from its equilibrium position. How muc work is needed to stretch it an additiona
Vinvika [58]

Work needed: 720 J

Explanation:

The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

E=\frac{1}{2}kx^2

where

k is the spring constant

x is the stretching of the spring from the equilibrium position

In this problem, we have

E = 90 J (work done to stretch the spring)

x = 0.2 m (stretching)

Therefore, the spring constant is

k=\frac{2E}{x^2}=\frac{2(90)}{(0.2)^2}=4500 N/m

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of

x = 0.2 + 0.4 = 0.6 m

Substituting,

E'=\frac{1}{2}kx^2=\frac{1}{2}(4500)(0.6)^2=810 J

Therefore, the additional work needed is

\Delta E=E'-E=810-90=720 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

7 0
3 years ago
How are pupae, larvae, and nymphs similar? *Answer Fast!*
Goshia [24]

Answer:

They are all a cycle!

Explanation:

They just are all cycles.

5 0
3 years ago
Space pilot Mavis zips past Stanley at a constant speed relative to him of 0.800c. Mavis and Stanley start timers at zero when t
inna [77]

Answer:

Explanation:

a. The equation of Lorentz transformations is given by:

x = γ(x' + ut')

x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.

x' = 0

t' = 5.00 s

u =0.800 c,

c is the speed of light = 3×10⁸ m/s

Then,

γ = 1 / √ (1 - (u/c)²)

γ = 1 / √ (1 - (0.8c/c)²)

γ = 1 / √ (1 - (0.8)²)

γ = 1 / √ (1 - 0.64)

γ = 1 / √0.36

γ = 1 / 0.6

γ = 1.67

Therefore, x = γ(x' + ut')

x = 1.67(0 + 0.8c×5)

x = 1.67 × (0+4c)

x = 1.67 × 4c

x = 1.67 × 4 × 3×10⁸

x = 2.004 × 10^9 m

x ≈ 2 × 10^9 m

Now, to find t we apply the same analysis:

but as x'=0 we just have:

t = γ(t' + ux'/c²)

t = γ•t'

t = 1.67 × 5

t = 8.35 seconds

b. Mavis reads 5 s on her watch which is the proper time.

Stanley measured the events at a time interval longer than ∆to by γ,

such that

∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)

c. According to Stanley,

dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m

which is the same as in part (a)

7 0
3 years ago
1. Synthesize Information You push your
RSB [31]

Answer:separate

Explanation:

6 0
3 years ago
In a lab experiment, a student is trying to apply the conservation of momentum. Two identical balls, each with a mass of 1.0 kg,
Studentka2010 [4]

Answer:

Second Trial satisfy principle of conservation of momentum

Explanation:

Given mass of ball A and ball B =\ 1.0\ Kg.

Let mass of ball A and B\ is\ m  

Final velocity of ball A\ is\ v_1

Final velocity of ball B\ is\ v_2

initial velocity of ball A\ is\ u_1

Initial velocity of ball B\ is\ u_2

Momentum after collision =mv_1+mv_2

Momentum before collision = mu_1+mu_2

Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.

Now, mu_1+mu_2=mv_1+mv_2

Plugging each trial in this equation we get,

First Trial

mu_1+mu_2=mv_1+mv_2\\1(1)+1(-2)=1(-2)+1(-1)\\1-2=-2-1\\-1=-3

momentum before collision \neq moment after collision

Second Trial

mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1.5)=1(-.5)+1(-.5)\\.5-1.5=-.5-.5\\-1=-1

moment before collision = moment after collision

Third Trial

mu_1+mu_2=mv_1+mv_2\\1(2)+1(1)=1(1)+1(-2)\\2+1=1-2\\3=-1

momentum before collision \neq moment after collision

Fourth Trial

mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1)=1(1.5)+1(-1.5)\\.5-1=1.5-1.5\\-.5=0

momentum before collision \neq moment after collision

We can see only Trial- 2 shows the conservation of momentum in a closed system.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is an analogy that describes the process of electron carriers?
    7·2 answers
  • The movement of energy from the sun toward the earth is an example of ?
    15·2 answers
  • A 2-kW electric heater takes 15 min to boil a quantity of water. If this is done once a day and power costs 10 cents per kWh, wh
    6·1 answer
  • Help me plzzzzzzzz with this
    6·1 answer
  • Maximum current problem. If the current on your power supply exceeds 500 mA it can damage the supply. Suppose the supply is set
    12·1 answer
  • PLEASE HELP!!!
    5·1 answer
  • A wire of Nichrome (a nickel-chromium-iron alloy commonly used in heating elements) is 1.3 m long and 1.6 mm2 in cross-sectional
    9·1 answer
  • What was discovered about the age of the ocean floor?
    5·1 answer
  • When the rudder moves to the left the plane will move to the right or left?
    11·2 answers
  • 1. Ignore friction and determine an expression for the distance d the boxes travel before coming to rest. Choose the floor as th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!