A cavity that has a hole in it......it's the best example of black body radiators....
<span>The combined
gas law has no official founder; it is simply the incorporation of the three
laws that was discovered. The combined gas law is a gas law that combines
Gay-Lussac’s Law, Boyle’s Law and Charle’s Law.
Boyle’s law states that pressure is inversely proportional with volume
at constant temperature. Charle’s law states that volume is directly
proportional with temperature at constant pressure. And Gay-Lussac’s law shows
that pressure is directly proportional with temperature at constant volume. The
combination of these laws known now as combined gas law gives the ratio between
the product of pressure-volume and the temperature of the system is constant.
Which gives PV/T=k(constant). When comparing a substance under different
conditions, the combined gas law becomes P1V1/T1 = P2V2/T2.</span>
There is too much information given, it's hard to understand exactly which variables are important in this problem.
117 m/sec is the speed of a transverse wave in a rope of length 3. 1 m and mass 86 g under a tension of 380 n.
The wave speed v is given by
v= √τ/μ
where τ is the tension in the rope and μ is the linear mass density of the rope.
The linear mass density is the mass per unit length of rope :
μ= m / L = (0.086 kg)/(3.1 m)=0.0277 kg/m.
v=
= 117.125 m/sec (approx. 117 m/sec
In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of transverse wave.
Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displacement of the solid particles away from their relaxed position, in directions perpendicular to the propagation of the wave. These displacements correspond to a local shear deformation of the material. Hence a transverse wave of this nature is called a shear wave. Since fluids cannot resist shear forces while at rest, propagation of transverse waves inside the bulk of fluids is not possible.
Learn more about Transverse waves here : brainly.com/question/13761336
#SPJ4