Answer:
mesa
Explanation:

A mesa is a flat-topped mountain or hill. It is a wide, flat, elevated landform with steep sides. ... Spanish explorers of the American southwest, where many mesas are found, used the word because the tops of mesas look like the tops of tables.
Answer:
0.465 kgm/s
Explanation:
Given that
Mass of the cart A, m1 = 450 g
Speed of the cart A, v1 = 0.85 m/s
Mass of the cart B, m2 = 300 g
Speed of the cart B, v2 = 1.12 m/s
Now, using the law of conservation of momentum.
It is worthy of note that our cart B is moving in opposite directions to A
m1v1 + m2v2 =
(450 * 0.85) - (300 * 1.12) =
382.5 - 336 =
46.5 gm/s
If we convert to kg, we have
46.5 / 100 = 0.465 kgm/s
Thus, the total momentum of the system is 0.465 kgm/s
<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
Answer:
Δy = 6.05 mm
Explanation:
The double slit phenomenon is described by the expression
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference
m = 0,±1, ±2, ...
As they tell us that they measure the dark stripes, we are in a case of destructive interference, let's use trigonometry to find the sins tea
tan θ = y / x
y = x tan θ
In the interference experiments the measured angle is very small so we can approximate the tangent
tan θ = sin θ / cos θ
cos θ = 1
tan θ = sin θ
y = x sin θ
We substitute in the destructive interference equation
d (y / x) = (m + ½) λ
y = (m + ½) λ x / d
The first dark strip occurs for m = 0 and the third dark strip for m = 2. Let's find the distance for these and subtract it
m = 0
y₀ = (0+ ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₀ = 1.511 10⁻³ m
m = 2
y₂ = (2 + ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₂ = 7.556 10⁻³ m
The separation between these strips is Δy
Δy = y₂-y₀
Δy = (7.556 - 1.511) 10⁻³
Δy = 6.045 10⁻³ m
Δy = 6.05 mm
We apply the following equation
T = 2π * sqrt (L/g)
Where g is the gravity = 9.8 m/s^2
L is the longitude of the pendulum (Height of the tower)
T is the period. (T = 18s)
We find L.............> (T /2π)^2 = L/g
L = g*(T /2π)^2...........> L = 80.428 meters