Longer, this is because the H in HNO2 is bonded with an oxygen, no longer allowing this structure to have a resonance structure.
NO2 on the other hand has one double bond and one single bond, so it has a resonance structure. And resonance structures are actually one structure so there isn't really a single and double bond, it's actually a 1 and 1/2 bond that calls for a higher bond order.
And I higher bond order will result in a shorter lengths!
I hope this helps out!!! And just out of curiosity, is this off of an AP FRQ packet??
By applying some (compared to other things) simple steps<span>, </span>you can control and prevent soilwearing away<span>! </span>The four most common soil wearing away prevention methods are green plants<span>, </span>geotextiles<span>, </span>mulch<span>, </span>and (big walls to hold back water, soil, etc.)<span>. </span>Green plants<span>: </span>The simplest andmost natural way to prevent wearing away is through planting green plants<span>.</span>
Take a zip lock bag and draw clouds on the outside with a sharpie then fill the bag with water and then tape it on a window that has a lot of sun and wait awhile and there should be a change in the water and that shooed what happens to water when it’s warm/sunny out
Answer:
See the answer below , please.
Explanation:
In a decomposition reaction, a certain compound is "broken" to give two or more different products.
An example for compound AB, giving as products A and B:
AB -> A + B
In the case of water:
2H20 -> 2H2 + 02, water decomposes giving Hydrogen and Oxygen
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86