The height of the ball when lifted is given by 7sin(25)=2.96
the gravitational energy is mgh, the kinetic is (1/2)mv². We can set these equal since the pendulum doesn't lose much energy
mgh = (1/2)mv²
we can divide by m (since we don't have it anyways)
gh = v²/2
v=√(gh/2) = √(9.81*2.96/2)=3.8m/s.
Not exactly one of your choices, but the right one none the less
Answer:
P = 3000 Pa
Explanation:
Weight of Dorji, W = F = mg = 1500 N
The total surface area of soles of his feet is 0.5 m²
We need to find the pressure exerted by his body on the ground. The pressure is equal to the force acting per unit area. So,

So, the pressure exerted by his body on the ground is 3000 Pa.
Answer: 339.148N
Explanation:
Data
Time (t) = 47s
U = 0m/s
V = 9.5m/s
Mass of B = 540kg
Frictional force on B = 230N
Both boats are connected so if A moves, B moves too.
Acceleration of boat A =?
Using equation of motion,
V = u + at
9.5 = 0 + a*47
a = 9.5 / 47
a = 0.2021 m/s²
The force required to accelerate boat B since it's the same force moving both boats =?
F = Mass * acceleration
F = 540 * 0.2021 = 109.14N
A frictional force of 230N exists on boat B
Total force (Tension) = frictional force + normal force = (109.15 + 230)N = 339.148N
First one I believe but im not completely sure