As the question tells you, you need to use the formula
% mass= mass of solute/ mass of solution x 100
mass solute= 30.0 g
mass of solution= 30.0 + 270.0= 300.0 g
% mass= 30.0/ 300.0 x 100= 10%
answer is B
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:

For Hydrogen:

For Oxygen:

Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:

For Hydrogen:

For Oxygen:

Thus, the empirical formula is HCO₂
Answer:
Magnesium chloride and water
Explanation:
Mg(OH)₂ + 2HCl ⟶ MgCl₂ + 2H₂O
magnesium chloride water
Answer:
3.4 M
Explanation:
M = grams/molar mass = ans./volume(L)
M = 919/180 = ans./1.5
Answer:
25 mM Tris HCl and 0.1% w/v SDS
Explanation:
A <em>10X solution</em> is ten times more concentrated than a <em>1X solution</em>. The stock solution is generally more concentrated (10X) and for its use, a dilution is required. Thus, to prepare a buffer 1X from a 10X buffer, you have to perform a dilution in a factor of 10 (1 volume of 10X solution is taken and mixed with 9 volumes of water). In consequence, all the concentrations of the components are diluted 10 times. To calculate the final concentration of each component in the 1X solution, we simply divide the concentration into 10:
(250 mM Tris HCl)/10 = 25 mM Tris HCl
(1.92 M glycine)/10 = 0.192 M glycine
(1% w/v SDS)/10 = 0.1% w/v SDS
Therefore the final concentrations of Tris and SDS are 25 mM and 0.1% w/v, respectively.