Answer:
It decreases
Explanation:
As one moves from left to right on the periodic table, the radius of atoms reduces due to the nuclear pull.
- The size of an atom estimated by the atomic radius is taken as half of the internuclear distance between the two covalently bonded atoms of non-metallic elements.
- Across a period, atomic radius decreases progressively from left to right.
- This is due to the increasing nuclear charge without attendant increase in the number of electronic shell.
Move the decimal place to the left 3 digits.
0.125
Two sublevels of the same principal energy level differ from each other through shape and size.
There are mainly 4 energy level s, p, d and f.
The s level has one orbital and one orbital have two electrons. So the maximum number of electron in s sublevel is 2.
The p level has three orbital and one orbital have two electrons. So the maximum number of electron in s sublevel is 6.
The d level has five orbital and one orbital have two electrons. So the maximum number of electron in s sublevel is 10.
The f level has 7 orbital and one orbital have two electrons. So the maximum number of electron in s sublevel is 14.
They may be differ in magnetic level.
Thus, we concluded that Two sublevels of the same principal energy level differ from each other through shape and size.
learn more about energy level:
brainly.com/question/14654539
#SPJ13
Answer:
The answer to your question is: letter E
Explanation:
A. This option is correct, the n = 3 shell only has subshells: s, p and d, and shell n = 4 or 5 have f subshell.
B. This option is true in subshell p could be at most 6 electrons and 3 suborbitals.
C. This option is correct orbital "s" is a sphere.
D. This option is correct, in subshell d could be at most 10 electrons and 5 orbitals.
E. This option is false, hydrogen only has 1 electron and then one subshell (s).
Consider you have a mixture of amino acids(contains all set of amino acids such as polar, non polar). Other than TLC, how are you supposed to separate a single amino acid from the mixture without loss of amino acid quantitatively.