We know, F = m * a
Here, m = 140 g = 0.140 Kg
a = 25 m/s2
It would be: F = 0.140 * 25 = 3.5 N
So your answer would be 3.5N
This is kinda confusing. I wish u just to a screenshot of the problem but here goes...
Forest at highest latitudes- Hardwood trees/deer, squirrel, foxes
Praries/temperate climate- Mostly small mammals/scrubs/steppes
High humidity/rainfall near equator- Abundant thick vegatation/manny species
No trees/ polar bears/ mosses- 25cm rain/few animals
Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation:
Resultant force is basically the force left after everything is added.
if a ball is being pushed one one side with 180N, and being pushed on teh opposite side with 84N (I added friction and air resistance since they're acting on the same side), then the resultant force would be:
180N - 84N =<u> 96N</u> (you can determine whether it's positive or negative based on the direction of the vector)