The approximate lateral area of the prism is determined as 831 square inches.
<h3>
What is lateral area of the hexagonal prism?</h3>
The lateral area of the hexagonal prism is calculated as follows;
LA = PH
where;
- P is perimeter of the prism
- H is height
A = ¹/₂Pa
where;
- a is apothem = 10 inches
- A is base area = 346.41 in²
346.41 = ¹/₂(10)P
346.41 = 5P
P = 346.41/5
P = 69.282 inches
LA = PH
LA = 69.282 x 12
LA = 831.38 in²
Learn more about lateral area of prism here: brainly.com/question/296674
#SPJ4
Answer: buzzer.
The working principle of a buzzer is the conversion of electrical energy to sound energy.
The switch just cuts or permits the flow of current, the motor convertes electrical or other kind of energy into mechanical energy, a bulb converts electrical energy into light and a battery converts chemical energy into electrical energy.
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.
Answer:
The answer is B.
Explanation:
If 212 degrees Fahrenheit is 100 degrees Celsius, then 32 degrees Fahrenheit is 0 degrees Celsius.
This is an insidious question. Quite frankly, I would not have
expected to see it here on Brainly. But I'm ready to play the
cards that you have dealt me.
None of the choices offered is a correct solution.
If the output of the AC generator is nice and sinusoidal, and
its maximum (peak) emf is 150 volts, then its RMS emf is
(1/2) (150) (√2) = 106.07 volts.
The resistor's dissipation is
Power = (current) x (voltage) .
If the resistor is dissipating its full rated 35W, then
35W = (current) x (106.07 V)
Divide each side by 106.07 V:
RMS Current = (35W) / (106.07 V) = 0.33 Ampere .
_________________________________________
Looking over the choices offered . . .
The largest choice ... 3.1 A ... is the current in a resistor
that is dissipating 35W if the voltage is
(35W / 3.1A) = 11.29 volts .
The smallest choice ... 1.2 A ... is the current in a resistor
that is dissipating 35W if the voltage is
(35W / 1.2A) = 29.17 volts .
Whatever you meant the so-called "150 V" of the generator
to represent ... whether the RMS sinusoidal, peak sinusoidal,
peak square-wave, RMS square-wave, DC, average, etc. ...
none of the choices for current, in combination with any of these
generators, would dissipate 35W.