1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
8

Hi can someone please answer the number 2 question i really need it thank you ❤️​

Physics
1 answer:
ExtremeBDS [4]2 years ago
6 0

Answer:

s"x ch"at with me insta id 123bhi__

You might be interested in
As the boat in which he is riding approaches a dock at 3.0 m/s, Jasper stands up in the boat and jumps toward the dock. Jasper a
Annette [7]
Im pretty sure it’s a because it makes more sense you know?.
5 0
2 years ago
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
What is cosmic background radiation?
Kobotan [32]
Cosmic background radiation is electromagnetic radiation from the sky with no discernible source. The origin of this radiation depends on the region of the spectrum that is observed. 
6 0
3 years ago
Read 2 more answers
A ball is thrown horizontally from the top of a 60 m building and lands 100 m from the base of the building. How long is the bal
zhannawk [14.2K]

Answer:

The ball is in the air for 3.5 seconds

The initial horizontal component of velocity is 28.6 m/s

The vertical component of the final velocity is 34.3 m/s downward

The final velocity is 44.7 m/s in the direction 50.2° below the horizontal

Explanation:

A ball is thrown horizontally

That means the vertical component of the initial velocity u_{y}=0

The initial velocity is the horizontal component u_{x}

The ball is thrown from the top of a 60 m

That means the vertical displacement component y = 60 m

→ y = u_{y} t + \frac{1}{2} gt²

where g is the acceleration of gravity and t is the time

y = -60 m , g = -9.8 m/s² , u_{y}=0

Substitute these values in the rule

→ -60 = 0 + \frac{1}{2} (-9.8)t²

→ -60 = -4.9t²

Divide both sides by -4.9

→ 12.2449 = t²

Take √ for both sides

∴ t = 3.5 seconds

* <em>The ball is in the air for 3.5 seconds </em>

The initial velocity is the horizontal component u_{x}

The ball lands 100 meter from the base of the building

That means the horizontal displacement x = 100 m

→ x = u_{x} t

→ t = 3.5 s , x = 100 m

Substitute these values in the rule

→ 100 = u_{x} (3.5)

Divide both sides by 3.5

→ u_{x} = 28.57 m/s

<em>The initial horizontal component of velocity is 28.6 m/s</em>

The vertical component of the final velocity is v_{y}

→ v_{y} = u_{y} + gt

→ u_{y} = 0 , g = -9.8 m/s² , t = 3.5 s

Substitute these values in the rule

→ v_{y} = 0 + (-9.8)(3.5)

→ v_{y} = -34.3 m/s

<em>The vertical component of the final velocity is 34.3 m/s downward</em>

The final velocity v is the resultant vector of  v_{x} and v_{y}

→ Its magnetude is v=\sqrt{(v_{x})^{2}+(v_{y})^{2}}

→ Its direction tan^{-1}\frac{v_{y}}{v_{x}}

→ v_{y} = 28.6 , v_{y} = -34.3

Substitute this values in the rules above

→ v=\sqrt{(28.6)^{2}+(-34.3)^{2}}=44.66

→ Its direction tan^{-1}\frac{-34.3}{28.6}=-50.18

The negative sign means the direction is below the horizontal

<em>The final velocity is 44.7 m/s in the direction 50.2° below the horizontal</em>

7 0
3 years ago
A sphere has a radius of 3.9cm and a density of 7.58 g/cm cubed. What is the mass?
snow_lady [41]

Answer:

m=ρV

V=4/3 * pi * r3

V=1.3 * 3.14 * 3.9^3

V=242.14 cm^3

m=7.58 * 242.14

m=1.8 kG

Explanation:

1. We calculate volume for sphere.

2. Then we calculate mass of sphere.

3 0
3 years ago
Other questions:
  • How did the old view of the solar system look like
    9·1 answer
  • There are many units of pressure. The standard one is Pa. Express Pa using only the fundamental units of meters, kilograms and s
    13·1 answer
  • When a virtual image is created in a plane mirrora. the image is upright.b. the image is located behind the mirror.c. reflected
    9·1 answer
  • A 2.0 kg particle moves in a circle of radius 3.1 m. As you look down on the plane of its orbit, the particle is initially movin
    5·2 answers
  • A base is a substance that's the chemical opposite of an acid.<br> True or false
    14·1 answer
  • What inference can be drawn from the following evidence? Specific atoms of carbon from a dead animal can be traced to the leaves
    6·1 answer
  • What type of stimulus do we tend to be particularly aware of ?
    10·1 answer
  • I beg you plz help me asap!!!
    8·2 answers
  • Which is the last stage in the life cycle of an average star? (1 point)
    8·1 answer
  • Calculate the potentia energy of a car with a mass of 3800kg that is on a hill 110 meters above sea level? USE 10 instead of 9.8
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!