0.042 moles of Hydrogen evolved
<h3>Further explanation</h3>
Given
I = 1.5 A
t = 1.5 hr = 5400 s
Required
Number of Hydrogen evolved
Solution
Electrolysis of water ⇒ decomposition reaction of water into Oxygen and Hydrogen gas.
Cathode(reduction-negative pole) : 2H₂O(l)+2e⁻ ⇒ H₂(g)+2OH⁻(aq)
Anode(oxidation-positive pole) : 2H₂O(l)⇒O₂(g)+4H⁻(aq)+4e⁻
Total reaction : 2H₂O(l)⇒2H₂(g)+O₂(g)
So at the cathode H₂ gas is produced
Faraday : 1 mole of electrons (e⁻) contains a charge of 96,500 C

Q = i.t
Q = 1.5 x 5400
Q = 8100 C
mol e⁻ = 8100 : 96500 = 0.084
From equation at cathode , mol ratio e⁻ : H₂ = 2 : 1, so mol H₂ = 0.042
The softest mineral in the Mohs Hardness Scale is talc.
Talc is often used in baby powder and corn starch, among other things. Talc cleaves into thin sheets, and it is held together only by van de Waals bonds, which allows these sheets to slip past each other. This gives the mineral its softness and it is often valued as a high-temperature lubricant.
Let's start by using the definition of acceleration. Acceleration is defined as the change in velocity over the change in time. In equation, that would be Δvelocity/Δtime. Based on the axes of the given graph, it shows the trend of position over time. So, the slope of the line and the curve shows the change of position over change of time, Δdistance/Δtime. In physics, this is the definition of speed or velocity. So, Maia is incorrect. Both curves show the speed or velocity of the object, and not acceleration. If the graph used a y-axis of velocity instead of position, then only at that instance, would be Maia be correct.
The difference between the two is, the straight line shows constant velocity while the curve line shows changing velocity.
Answer is cccccccccccccccccccccccccccccccccccccccc