Answer:
rate = k[A][B] where k = k₂K
Explanation:
Your mechanism is a slow step with a prior equilibrium:
![\begin{array}{rrcl}\text{Step 1}:& \text{A + B} & \xrightarrow [k_{-1}]{k_{1}} & \text{C}\\\text{Step 2}: & \text{C + A} & \xrightarrow [ ]{k_{2}} & \text{D}\\\text{Overall}: & \text{2A + B} & \longrightarrow \, & \text{D}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrcl%7D%5Ctext%7BStep%201%7D%3A%26%20%5Ctext%7BA%20%2B%20B%7D%20%26%20%5Cxrightarrow%20%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7D%20%26%20%5Ctext%7BC%7D%5C%5C%5Ctext%7BStep%202%7D%3A%20%26%20%5Ctext%7BC%20%2B%20A%7D%20%26%20%5Cxrightarrow%20%5B%20%5D%7Bk_%7B2%7D%7D%20%26%20%5Ctext%7BD%7D%5C%5C%5Ctext%7BOverall%7D%3A%20%26%20%5Ctext%7B2A%20%2B%20B%7D%20%26%20%5Clongrightarrow%20%5C%2C%20%26%20%5Ctext%7BD%7D%5C%5C%5Cend%7Barray%7D)
(The arrow in Step 1 should be equilibrium arrows).
1. Write the rate equations:
![-\dfrac{\text{d[A]}}{\text{d}t} = -\dfrac{\text{d[B]}}{\text{d}t} = -k_{1}[\text{A}][\text{B}] + k_{1}[\text{C}]\\\\\dfrac{\text{d[C]}}{\text{d}t} = k_{1}[\text{A}][\text{B}] - k_{2}[\text{C}]\\\\\dfrac{\text{d[D]}}{\text{d}t} = k_{2}[\text{C}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BA%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BB%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20%2B%20k_%7B1%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BC%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20-%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BD%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D)
2. Derive the rate law
Assume k₋₁ ≫ k₂.
Then, in effect, we have an equilibrium that is only slightly disturbed by C slowly reacting to form D.
In an equilibrium, the forward and reverse rates are equal:
k₁[A][B] = k₋₁[C]
[C] = (k₁/k₋₁)[A][B] = K[A][B] (K is the equilibrium constant)
rate = d[D]/dt = k₂[C] = k₂K[A][B] = k[A][B]
The rate law is
rate = k[A][B] where k = k₂K
Answer:
67.91 g of CuCl2; 32.09 g of Cu.
Explanation:
The two masses add to 100.0 g, the initial amount of starting material, demonstrating the law of conservation of matter.
Answer: The new volume be if you put it in your freezer is 1.8 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

The new volume be if you put it in your freezer is 1.8 L
Answer: yes they do.
Explanation:
I'm tryna get more points because my other account got blocked for the next 48 hours.
(Don't be mad at me please)
Answer:
Beryllium (Be) : 9.01 g/mol
Silicon (Si) : 28.09 g/mol
Calcium (Ca) : 40.08 g/mol
Rhodium (Rh) : 102.91 g/mol
Explanation: