Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
![F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f](https://tex.z-dn.net/?f=F_i%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3EThe%20electrostatic%20force%2C%20Ff%2C%20in%20the%20final%20configuration%20is%20%3C%2Fp%3E%3Cp%3E%5Btex%5DF_f%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B3Q%5E2%2F8%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3ETherefore%2C%20the%20relation%20between%20Fi%20and%20Ff%20is%20as%20follows%3C%2Fp%3E%3Cp%3E%5Btex%5DF_i%20%3D%20F_f%5Cfrac%7B3%7D%7B8%7D%5C%5C8F_i%20%3D%203F_f)
Answer:
hence option A is correct
Explanation:
heat required from -9°C to 0°C ice = mass × specific heat of ice ×change in temperature
heat required from -9°C to 0°C ice = 7×2100×9 =132300 J =0.1323 MJ
( HERE SPECIFIC HEAT OF ICE IS A CONSTANT VALUE OF 2100
J/(kg °C )
heat required from 0°C ice to 0°C water = mass× specific heat of fusion of ice
= 7×3.36×10^5
= 2.352 × 10^6 J
= 2.352 MJ
TOTAL HEAT ENERGY REQUIRED = 0.1323 MJ +2.352 MJ
= 2.4843 MJ
hence option A is correct
Answer:
The average acceleration of the bearings is 
Explanation:
Given that,
Height = 1.94 m
Bounced height = 1.48 m
Time interval 
Velocity of the ball bearing just before hitting the steel plate
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



Negative as it is directed downwards
After bounce back,
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



We need to calculate the average acceleration of the bearings while they are in contact with the plate
Using formula of acceleration

Put the value into the formula



Hence,The average acceleration of the bearings is 
Explanation:
It is given that,
Wavelength of red laser light, 
The second order fringe is formed at an angle of, 
For diffraction grating,

, n = 2


The wavelength λ of light that creates a first-order fringe at 22 is given by :




Hence, this is the required solution.