Answer:
The smaller gear will rotate faster.
Explanation:
If a larger gear is driven by a smaller gear, the large gear will rotate slower than the smaller gear but will have a greater moment. For example, a low gear on a bike or car. If a smaller gear is driven by a larger gear, the smaller gear will rotate quicker than the larger gear but will have a smaller moment.
I hope this helps! :)
The equations are based on the following assumptions
1) The bar is straight and of uniform section
2) The material of the bar is has uniform properties.
3) The only loading is the applied torque which is applied normal to the axis of the bar.
4) The bar is stressed within its elastic limit.
Nomenclature
T = torque (Nm)
l = length of bar (m)
J = Polar moment of inertia.(Circular Sections) ( m^4)
J' = Polar moment of inertia.(Non circluar sections) ( m^4 )
K = Factor replacing J for non-circular sections.( m^4)
r = radial distance of point from center of section (m)
ro = radius of section OD (m)
τ = shear stress (N/m^2)
G Modulus of rigidity (N/m^2)
θ = angle of twist (radians)
That would be B, I hope this helps!
Answer:

Explanation:
The power needed to make the escalator working is obtained by means of the Work-Energy Theorem:




The mechanical efficiency of the escalator is:


Answer:
a) isentropic efficiency = 84.905%
b) rate of entropy generation = .341 kj/(kg.k)
Please kindly see explaination and attachment.
Explanation:
a) isentropic efficiency = 84.905%
b) rate of entropy generation = .341 kj/(kg.k)
The Isentropic efficiency of a turbine is a comparison of the actual power output with the Isentropic case.
Entropy can be defined as the thermodynamic quantity representing the unavailability of a system's thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system.
Please refer to attachment for step by step solution of the question.