1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
15

) A shaft encoder is to be used with a 50 mm radius tracking wheel to monitor linear displacement. If the encoder produces 256 p

ulses per revolution, what will be the number of pulses produced by a linear displacement of 200 mm?
Engineering
1 answer:
andrey2020 [161]3 years ago
5 0

Answer:

number of pulses produced =  162 pulses

Explanation:

give data

radius = 50 mm

encoder produces = 256 pulses per revolution

linear displacement = 200 mm

solution

first we consider here roll shaft encoder on the flat surface without any slipping

we get here now circumference that is

circumference = 2 π r .........1

circumference = 2 × π × 50

circumference = 314.16 mm

so now we get number of pulses produced

number of pulses produced = \frac{linear\ displacement}{circumference} × No of pulses per revolution .................2

number of pulses produced = \frac{200}{314.16} × 256

number of pulses produced =  162 pulses

You might be interested in
The parts of a feature control frame are the tolerance value, the datum references, and the
Elan Coil [88]

Answer:

d

Explanation:

4 0
3 years ago
About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
Nana76 [90]

The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

<h3>Thickness of the aluminum</h3>

The thickness of the aluminum can be determined using from distance of closest approach of the particle.

K.E = \frac{2KZe^2}{r}

where;

  • Z is the atomic number of aluminium  = 13
  • e is charge
  • r is distance of closest approach = thickness of aluminium
  • k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (1.6\times 10^{-19})^2}{2.5 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

<h3>For 2.5 MeV protons</h3>

Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.

<h3>For 10 MeV alpha-particles</h3>

Charge of alpah particle = 2e

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (2 \times 1.6\times 10^{-19})^2}{10 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

Learn more about closest distance of approach here: brainly.com/question/6426420

7 0
2 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Along with refining craft skills another way to increase the odds for career advancement is to
Xelga [282]

The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.

<h3>What is a career advancement?</h3>

An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.

An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.

Therefore, the Option A is correct.

Read more about career advancement

<em>brainly.com/question/7053706</em>

7 0
2 years ago
Distinguish between systems analysis and systems design?
Zielflug [23.3K]

Answer:

System analysis can be defined as a deep analysis of a part of the structure of a module that has been designed before. System design means to make any module or a part of the structure from scratch and build it completely without estimation.

Explanation:

3 0
3 years ago
Other questions:
  • A steam reformer operating at 650C and 1 atm uses propane as fuel for hydrogen production. At the given operating conditions, th
    12·1 answer
  • Use the drop-down menus to choose the correct term or words to complete the statements.
    10·1 answer
  • Disc brake rotors that are too thin cannot handle as much heat and will experience ___________.
    6·1 answer
  • What the Best describes the purpose of the occupational safety and health administración OSHA
    12·1 answer
  • What engine does the mercedes 500e have​
    5·1 answer
  • THIS IS NOT AN ACADEMIC QUESTION, but who was the bitter of 1987 in FNAF?
    6·2 answers
  • What Number Am I?
    13·1 answer
  • What type of plans have to do with earth, soil, excavation, and location<br> of a house on a lot?
    12·1 answer
  • What is the physical mechanism that causes the friction factor to be higher in turbulent flow?
    13·1 answer
  • Which pipe for water is best for construction?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!