1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
15

) A shaft encoder is to be used with a 50 mm radius tracking wheel to monitor linear displacement. If the encoder produces 256 p

ulses per revolution, what will be the number of pulses produced by a linear displacement of 200 mm?
Engineering
1 answer:
andrey2020 [161]3 years ago
5 0

Answer:

number of pulses produced =  162 pulses

Explanation:

give data

radius = 50 mm

encoder produces = 256 pulses per revolution

linear displacement = 200 mm

solution

first we consider here roll shaft encoder on the flat surface without any slipping

we get here now circumference that is

circumference = 2 π r .........1

circumference = 2 × π × 50

circumference = 314.16 mm

so now we get number of pulses produced

number of pulses produced = \frac{linear\ displacement}{circumference} × No of pulses per revolution .................2

number of pulses produced = \frac{200}{314.16} × 256

number of pulses produced =  162 pulses

You might be interested in
Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
a_sh-v [17]

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)

Given that q=500 W

so

500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)

By solving that equation we get

T_2=88.03°C

So outside temperature =88.03°C

6 0
3 years ago
You find an unnamed fluid in the lab we will call Fluid A. Fluid A has a specific gravity of 1.65 and a dynamic viscosity of 210
Naily [24]

Answer:

1.2727 stokes

Explanation:

specific gravity of fluid A = 1.65

Dynamic viscosity = 210 centipoise

<u>Calculate the kinematic viscosity of Fluid A </u>

First step : determine the density of fluid A

Pa = Pw * Specific gravity =  1000 * 1.65 = 1650 kg/m^3

next : convert dynamic viscosity to kg/m-s

210 centipoise = 0.21 kg/m-s

Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A

                                            = 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec

Convert to stokes = 1.2727 stokes

4 0
2 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
Ann [662]

The number of tubs that each of them sold is; 24 tubs each

The number of days it will take for both of them to sell same amount of tubs is; 4 days

Number of cookies that Nicole had already sold = 4 tubs

Number of cookies sold by Josie before counting = 0 cookies

Nicole now sells 5 tubs per day and

Josie now sells 6 tubs per day.

Let the number of days it will take for them to have sold the same amount of cookies be d.

Thus;

5d + 4 = 6d + 0

6d - 5d = 4

d = 4 days

Thus, total number of cookies for both are;

Total for Nicole = 4 + 5(4) = 24 cookies

Total for Josie = 6(4) = 24 cookies

Read more about proportion at; brainly.com/question/870035

6 0
2 years ago
Technician A says that a radio may be able to receive AM signals, but not FM signals if the antenna is defective. Technician B s
DIA [1.3K]

The response to whether the statements made by both technicians are correct is that;

D: Neither Technician A nor Technician B are correct.

<h3>Radio Antennas</h3>

In radios, antennas are the means by which signals to the sought frequency be it AM or FM are received.

Now, if the antenna is bad, it means it cannot pick any radio frequency at all and so Technician A is wrong.

Now, most commercial antennas usually come around a resistance of 60 ohms and so it is not required for a good antenna to have as much as 500 ohms resistance and so Technician B is wrong.

Read more about Antennas at; brainly.com/question/25789224

3 0
2 years ago
Other questions:
  • Steam enters a turbine at 120 bar, 508oC. At the exit, the pressure and quality are 50 kPa and 0.912, respectively. Determine th
    5·1 answer
  • Select the correct answer
    8·1 answer
  • A paint company produces glow in the dark paint with an advertised glow time of 15 min. A painter is interested in finding out i
    11·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • What are some sources of resistance? (Check all
    5·1 answer
  • Why is there an Engineering Process?
    15·2 answers
  • Engine horsepower decreases ________% for every___________feet above sea level.
    9·1 answer
  • 6.03 Discussion: Then &amp; Now - Safety
    9·1 answer
  • What are the best collages for architectural learning?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!