Answer: 37.5 km
Explanation:
The question is that
If you ran 15 km/hr for 2.5 hours, how much distance would you cover ?
Where
Speed = 15 km/ hr
Time = 2.5 hours
Using the formula for speed.
Speed = distance/time
Substitute speed and time into the formula
15 = distance/ 2.5
Make distance the subject of formula by cross multiplying.
Distance = 15 × 2.5
Distance = 37.5 km.
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
Students were asked to place a mint in their mouths and determine how long it took for the mint to dissolve. The condition of the mint varied in each student group. One group of students were asked to leave a whole mint in their mouth, not moving it around, and let it dissolve. Another group swirled a mint, while the other groups used mints broken into smaller pieces. See the chart for all of the manipulated variable. After reviewing that data table, what kind of result would you predict for the swirled, whole mint?
A) The time is likely between 10-30 seconds.
B) The time is likely between 40-80 seconds.
C) The time is likely between 90-160 seconds.
D) The time is likely between 100-200 seconds.
ANSWER: B) The time is likely between 40-80 seconds.
EXPLANATION:The time is likely between 40-80 seconds.
By swirling the mint, this is agitating and creating a higher frequency of collisions between the saliva particles and mint particles, increasing the rate of dissolution. Therefore, the time is likely to be less than the mint cut in half but probably more than the mint when it is in small pieces.
Answer:
a) 0.32 m b) -2.4 m c) 1.08 m/s d) -4 m/s
Explanation:
a)
- As the x and y axes (as chosen) are perpendicular each other, the movements along these axes are independent each other.
- This means that we can use the kinematic equations for displacements along both axes.
- In the x direction, as the only initial velocity is in the south direction (-y axis), the skateboarder is at rest, so we can write:

- In the y-direction, as no acceleration is acting on the skateboarder, we can write the following displacement equation:

- For t = 0.6s, replacing by the givens, we get the position (displacement from the origin) on the x-axis, as follows:

b)
- From (2) we can get the position on the y-axis (displacement from the origin) as follows:

c)
- In the x- direction, we can find the component of the velocity along this direction, as follows:

- Replacing by the values, we have:

d)
- As the skateboarder moves along the y-axis at a constant speed equal to her initial velocity, we have:
vfy = voy = -4 m/s