Answer
given,
mass of ball, m = 57.5 g = 0.0575 kg
velocity of ball northward,v = 26.7 m/s
mass of racket, M = 331 g = 0.331 Kg
velocity of the ball after collision,v' = 29.5 m/s
a) momentum of ball before collision
P₁ = m v
P₁ = 0.0575 x 26.7
P₁ = 1.535 kg.m/s
b) momentum of ball after collision
P₂ = m v'
P₂ = 0.0575 x (-29.5)
P₂ = -1.696 kg.m/s
c) change in momentum
Δ P = P₂ - P₁
Δ P = -1.696 -1.535
Δ P = -3.231 kg.m/s
d) using conservation of momentum
initial speed of racket = 0 m/s
M u + m v = Mu' + m v
M x 0 + 0.0575 x 26.7 = 0.331 x u' + 0.0575 x (-29.5)
0.331 u' = 3.232
u' = 9.76 m/s
change in velocity of the racket is equal to 9.76 m/s
Answer:
The answer is True
Explanation:
Statistical Multiplexing is considered an example of communication link sharing which makes it comparable to DBA (Dynamic Bandwidth Allocation). Here, communication channels are broken down into data streams to optimize the communication process.
In Statistical Time-division Multiplexing, time slots are allocated to data streams for communication optimization. This method makes sure that no time slot or bandwidth is wasted.
Hence, the sum of combined circuits must not be equal to the capacity of the circuit to work effectively.
1) True 2) True 3)True I hope I helped
Answer:
Time period of the motion will remain the same while the amplitude of the motion will change
Explanation:
As we know that time period of oscillation of spring block system is given as

now we know that
M = mass of the object
k = spring constant
So here we know that the time period is independent of the gravity
while the maximum displacement of the spring from its mean position will depends on the gravity as


so we can say that
Time period of the motion will remain the same while the amplitude of the motion will change
John can run with the velocity of 5 m/s
Explanation:
- Kinetic energy is defined as the energy is being used to do an activity, basically energy associated with the motion of objects in the universe.
- The formula used to find the kinetic energy of an object is k =
where as k represented as kinetic energy, m is the mass of the object and v is the velocity of the given object.
- Here, to find the answer we have to re-write the equation as
![v = \sqrt[2]{\frac{2 k}{m} }](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%5B2%5D%7B%5Cfrac%7B2%20k%7D%7Bm%7D%20%7D)
- Given, the mass of the object, here it is John = 80 kg, energy needs to be converted to kinetic energy, k = 1000 J.
- Hence, substitute all the values, then you would velocity as 5 m/s