Answer:
%Program prompts user to input vector
v = input('Enter the input vector: ');
%Program shows the value that user entered
fprintf('The input vector:\n ')
disp(v)
%Loop for checking all array elements
for i = 1 : length(v)
%check if the element is a positive number
if v(i) > 0
%double the element
v(i) = v(i) * 2;
%else the element is negative number.
else
%triple the element
v(i) = v(i) * 3;
end
end
%display the modified vector
fprintf('The modified vector:\n ')
disp(v)
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
In order to create a robotic dog, you are needing the necessary parts to create Goddard from Jimmy nutreon boy genius
Answer: It means "Do it yourself".
Explanation: You're welcome!
Answer:
The heat input from the combustion phase is 2000 watts.
Explanation:
The energy efficiency of the heat engine (
), no unit, is defined by this formula:
(1)
Where:
- Heat input, in watts.
- Power output, in watts.
If we know that
and
, then the heat input from the combustion phase is:




The heat input from the combustion phase is 2000 watts.