P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm

Answer:
Grey precipitate implies the presence of silver ions
Yellow precipitate implies the presence of lead II ions
Explanation:
Qualitative analysis provides us a quick method of identifying ions present in a sample by chemical reactions involving simple reagents. Precipitates having a unique colour is formed. The identity of ions in the sample is deduced from the colour of precipitate obtained when particular reagents are added.
In the question, a precipitate containing silver ions upon standing turn into grey colour. Similarly, lead II ions give a yellow precipitate.
The density of ethylene glycol is: D = 1.11 g/mL
D = m / V
and V = 358 mL
m = D * V
m = 1.11 g/mL * 358 mL
m = 397.38 g
Answer:
Mass is 397.38 g.
At STP, copper (Cu) would be the only substance here that will exist in the solid state.
A mirror is opaque, meaning that it reflects the light and images that shine on it's reflective surface.