When water chemically combines with carbon dioxide, a Carbonic acid is formed.
<u>Explanation</u>:
- Carbon dioxide responds with water in a solution to form a weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles. The hydrogen particles and water respond with the most basic minerals modifying the minerals.
-
Carbon dioxide and the other atmospheric gases disintegrate in surface waters. Dissolved gases are in equilibrium with the gas in the atmosphere. Carbon dioxide responds with water in a solution to form the weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles.
-
The hydrogen particles and water respond with the most basic minerals altering the minerals. The results of enduring are prevalently clays and soluble particles, for example, calcium, iron, sodium, and potassium. Bicarbonate particles additionally remain in solution; a remnant of the carbonic acid that was utilized to weather the rocks.
<span>this
could be a substitution reaction. as you will locate, between the
hydrogen's on the propane chain replaced into substituted for a Br from
Br2. that's particularly no longer a addition reaction! addition
reactions artwork once you have a AlkENE! by using fact that's an AlkANE
it would not have a double bond to act as a nucleophile to attack the
Br2 (which might act as a electrophile to boot reactions).</span>
Answer:
Fast change
Explanation:
Weathering, erosion, and deposition are examples of slow change. Earthquakes, erupting volcanoes, and landslides happen fast. Therefore, they can change the Earth's surface very quickly.
Answer:

Explanation:
Incorrect use has resulted in accidents and disfiguring burns. Never leave a methylated spirit appliance unattended. Also make sure that the camping stove or appliance is on a flat surface and that the fuel cannot spill out.
Answer:An increase in temperature commonly will increase the rate of reaction. An growth in temperature will improve the common kinetic electricity of the reactant molecules.
Explanation: