Answer:
C = (5/9) F - (160/9)
They both read equal at Z = - 40
Explanation:
We are looking for a linear function so we can write the following condition
Y = aX + b
Applying it to the exercise we got C = a F + b
Let's use the facts that C = 0 when F = 32 and C = 100 when F = 212
0 = 32 a + b (1)
100 = 212 a + b (2)
From (1) b = - 32 a , when we replace this in (2) we obtain a = (5/9)
and b = - (5/9)32 = - 160/9
Finally the linear function is C = (5/9) F - (160/9)
Both readings are equal at a Z number so
Z = (5/9) Z - 160/9
(4/9) Z = -160/9 and Z = - 40
<u>Answer:</u> The concentration of
required will be 0.285 M.
<u>Explanation:</u>
To calculate the molarity of
, we use the equation:

Moles of
= 0.016 moles
Volume of solution = 1 L
Putting values in above equation, we get:

For the given chemical equations:

![Ni^{2+}(aq.)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K_f=1.2\times 10^9](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq.%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK_f%3D1.2%5Ctimes%2010%5E9)
Net equation: ![NiC_2O_4(s)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K=?](https://tex.z-dn.net/?f=NiC_2O_4%28s%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK%3D%3F)
To calculate the equilibrium constant, K for above equation, we get:

The expression for equilibrium constant of above equation is:
![K=\frac{[C_2O_4^{2-}][[Ni(NH_3)_6]^{2+}]}{[NiC_2O_4][NH_3]^6}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC_2O_4%5E%7B2-%7D%5D%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%7D%7B%5BNiC_2O_4%5D%5BNH_3%5D%5E6%7D)
As,
is a solid, so its activity is taken as 1 and so for 
We are given:
![[[Ni(NH_3)_6]^{2+}]=0.016M](https://tex.z-dn.net/?f=%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%3D0.016M)
Putting values in above equations, we get:
![0.48=\frac{0.016}{[NH_3]^6}}](https://tex.z-dn.net/?f=0.48%3D%5Cfrac%7B0.016%7D%7B%5BNH_3%5D%5E6%7D%7D)
![[NH_3]=0.285M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.285M)
Hence, the concentration of
required will be 0.285 M.
Answer:
9.82 g of Mg(NO₃)₂
Explanation:
Let's determine the reaction:
2AgNO₃ + MgBr₂ → Mg(NO₃)₂ + 2AgBr
2 moles of nitrate silver reacts with MgBr₂ in order to produce 1 mol of magnesium nitrate and silver bromide.
We determine the moles of AgNO₃
22.5 g . 1mol / 169.87g = 0.132 moles
Ratio is 2:1.
2 moles of silver nitrate can produce 1 mol of magnesium nitrate
Then, our 0.132 moles may produce (0.132 . 1)/ 2 = 0.0662 moles
We convert moles to mass:
0.0662 mol . 148.3 g/ mol = 9.82 g
Answer:
0.17%
Explanation:
With the equation:
2Cr2O7 2- + C2H5OH + H2O --> 4Cr3+ + 2CO2 + 11H2O
We can assume that every mole of ethanol needs 2 moles of Dichromate to react.
So if in 1L we have 0.05961 moles of dichromate we can discover how many moles we have in 35.46mL
1000 mL - 0.05962 moles
35.46 mL - x
x = 
x = 2,11* 10^-3 moles
As we said earlier, 1 mole of ethanol needs 2 mole of dichromate, so in the solution we have 1,055*10^-3 moles of ethanol. We can discover the mass of ethanol present in the solution.
1 mole - 46g
1.055*10^-3 - y
y = 46 * 1.055*10^-3
y = 0.048 g
To discover the percent of alchol we can use a simple relation
28 g - 100%
0.048 - z
z = 
z = 0.17%