<h3>
Answer:</h3>
Ag⁺(aq) +Cl⁻(aq) → AgCl(s)
<h3>
Explanation:</h3>
The questions requires we write the net ionic equation for the reaction between aqueous potassium chloride and aqueous silver nitrate.
<h3>Step 1: Writing a balanced equation for the reaction.</h3>
- The balanced equation for the reaction between aqueous potassium chloride and aqueous silver nitrate will be given by;
KCl(aq) + AgNO₃(aq) → KNO₃(aq) +AgCl(s)
- AgCl is the precipitate formed by the reaction.
<h3>Step 2: Write the complete ionic equation.</h3>
- The complete ionic equation for the reaction is given by showing all the ions involved in the reaction.
K⁺(aq)Cl⁻(aq) + Ag⁺(aq)NO₃⁻(aq) → K⁺(aq)NO₃⁻(aq) +AgCl(s)
- Only ionic compounds are split into ions.
<h3>Step 3: Write the net ionic equation for the reaction.</h3>
- The net ionic equation for a reactions only the ions that fully participated in the reaction and omits the ions that did not participate in the reaction.
- The ions that are not involved directly in the reaction are known as spectator ions and are not included while writing net ionic equation.
Ag⁺(aq) +Cl⁻(aq) → AgCl(s)
<span>The correct answer is b. Radon. Oxygen, Hyrdrogen, and Boron, are not radioactivel ike Radon and it regenerates quickly meaning that even though it has a short half-life period, it stays for a long time once released. It also has no taste so it's difficult to notice without proper gear because you can't feel it.</span>
<span>The balance format is
4NH3+ 5O2 -------> 4NO + 6H2O </span>
M/V=D
65.14/35.4≈1.84
The density of the sulfuric acid would be about 1.84g/mL
A balanced equation is a prime example of the law of the conservation of mass as the number of atoms in the reactants is consistent with the number of atoms in the reactants meaning the amount of matter has not changed and no mass has been created or destroyed hence obeying the law.