Answer:
Velocity=1.1m/s
Amplitude=0.35m
Explanation:
Given:
time 't' = 2.9s
wavelength 'λ'= 5.5m
distance 'd'=0.7m
The time period 't' is the time b/w two successive waves. Therefore, the time it takes from the boat to travel from its highest point to its lowest is a half period.
So, T = 2 x 2.9 => 5.8 s
As we know that frequency is the reciprocal of time period, we have
f= 1/T = 1/5.8 =>0.2 Hz
In order to find how fast are the waves traveling, the velocity is given by
Velocity = f λ
V= 0.2 x 5.5 =>1.1m/s
The distance between the boat's highest point to its lowest point is double the amplitude.
Therefore , we can write
Amplitude 'A'= d/2 =>0.7/2 =>0.35m
Answer:
The power consumed by the air filter is 9.936 watts
Explanation:
It is given that, the secondary coil of a step-up transformer provides the voltage that operates an electrostatic air filter.
Turn ratio of the transformer, 
Voltage of primary coil, 
Current in the secondary coil, 
The power consumed by the air filter is :
...........(1)
For a transformer, 
So, 


So, the power consumed by the air filter is 9.936 watts. Hence, this is the required solution.
Temperature is the measurement of the average energy of the particles in a solid, liquid or gas and thermal energy is the total energy in a set amount of solid, liquid or gas. Therefore, the temperature and thermal energy is not the same thing. They are both about the particle theory, which is a theory that all particles of solid, liquid or gas are always in motion. But the difference between the two is that temperature is the "measurement" of the particles in a solid, liquid or gas and the thermal energy is the total energy in a set amount of solid, liquid or gas.
Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same