A. Large atoms have valence electrons farther from the nucleus and lose them more readily, so they are more reactive than small atoms.
For example, the valence electron of a small atom like Li is tightly held. <em>Lithium gently fizzes</em> on the surface as it reacts with the water to produce hydrogen.
In contrast, the valence electron of a large atom like Cs is so loosely held that <em>cesium exlodes </em>on contact with water.
To calculate the amount of heat transferred when an amount of reactant is decomposed, we must look at the balanced reaction and its corresponding heat of reaction. In this case, we can see that 252.8 kJ of heat is transferred per 2 moles of CH3OH used. When 22 g of CH3OH is used, 86.9 kJ is absorbed.
Answer:
The Popular ones are five in number
Explanation:
Calcium
Silicon
Germanium
Tin
Lead
Make small talk and become his friend get to know him if he opens up he trust you and then you take it from there.
Answer:
Explanation:
mole of NaOH present = molarity x volume
= 1.0 X 0.05 = 0.05 mole
<em>Recommended mole of HCl </em>= 1.1 x 0.05 = 0.055
<em>Mole of HCl carelessly added by Jacob </em>= 1.1 x 0.04 = 0.044
From the equation of reaction:
HCl + NaOH ----> NaCl + H2O
The ratio of mole of HCl to that of NaOH for a complete neutralization reaction is 1:1. However, the recommended mole of HCl (0.055 mole) is more than the mole of NaOH (0.05 mole). <u>Hence, the recommended endpoint of the reaction is supposed to be acidic.</u>
The mole of HCl added by Jacob (0.044) is short of the recommended amount (0.055) and also short of the amount required for a neutral endpoint (0.05). <u>This means that the endpoint will have an excess amount of NaOH and as such, basic instead of the desired acidic endpoint.</u>