Answer:
The kinetic energy at a displacement of half the amplitude is 37.5 J
Explanation:
Given;
total energy on the spring, E = 50 J
When the displacement is half the amplitude, the total energy in the spring is sum of the kinetic energy and elastic potential energy.
E = K + U
Where;
K is the kinetic energy
U is the elastic potential energy
K = E - U
K = E - ¹/₂KA²
When the displacement is half = ¹/₂(A) = A/₂
K = E - ¹/₂K(A/₂)²
K = E - ¹/₂K(A²/₄)
K = E - ¹₄(¹/₂KA²)
Recall, E = ¹/₂KA²
K = ¹/₂KA² - ¹₄(¹/₂KA²) (recall from simple arithmetic, 1 - ¹/₄ = ³/₄)
K = 1(¹/₂KA²) - ¹₄(¹/₂KA²) = ³/₄(¹/₂KA²)
K = ³/₄(¹/₂KA²)
But E = ¹/₂KA² = 50J
K = ³/₄ (50J)
K = 37.5 J
Therefore, the kinetic energy at a displacement of half the amplitude is 37.5 J