The rate of flow of electric CHARGE past any point is described in the unit of electric CURRENT ... the Ampere.
Answer:
Gallium
Explanation:
Gallium is one such element used as a do/pant in a p-type semiconductor.
A do/pant is an impurity added to a semi-conductor used to alter its properties. Semi-conductors have a wide range of applications. They will conduct heat and electricity only under certain conditions. This property is highly desirable and find a wide application in electronics.
For p-type conductors, they are best do/ped with elements with 3 valence electrons. These are group 3 elements. From the choices, only gallium belongs to this group.
Other elements given are good do/pants for n-type semiconductors. They have 5 valence electrons.
Almost all of the energy on Earth comes from the Sun
The energy in fossil fuels originally came from the Sun
Plants convert the energy
Explanation:
The sun is the ultimate source of energy on earth and even the whole of the solar system. The sun drives and powers all external processes on earth. It produces its energy from the nuclear fusion of lighter nuclei into heavier ones.
- Almost all of the energy on earth comes from the sun. A few component of the energy on the surface comes from the internal heat engine.
- The energy of fossil fuels originally came from the sun. This is because, plants stores the energy in the process of photosynthesis. When they die and the energy is not released, the energy is stored as fossil fuels.
- Plants in the process of photosynthesis converts the energy. Here green plants combines carbon dioxide and water in the presence of sunlight.
Learn more:
Convection brainly.com/question/1140127
#learnwithBrainly
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
False, there are always pros and cons to research