Answer: f=20 (i think)
Explanation:
all I did was divide 300 and 15.
300/15= 20
Answer:
Mass of the climber = 69.38 kg
Explanation:
Change in length

Load, P = m x 9.81 = 9.81m
Young's modulus, Y = 0.37 x 10¹⁰ N/m²
Area

Length, L = 15 m
ΔL = 5.1 cm = 0.051 m
Substituting
Mass of the climber = 69.38 kg
Answer:
3.32 m/s
Explanation:
From the law of conservation of energy, the sum of mechanical and kinetic energy should be equal to the 10 J given. Potential energy is given by mgh where m is mass, g is acceleration due to gravity and h is the height. For this case,
and l is string length, given as 2 m, \theta is given as 50 degrees. Kinetic energy is given by
and it is this velocity that is unknown.

A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.