Answer:
The answer is below
Explanation:
Newton's second law of motion states that the force applied to an object is directly proportional to the rate of change of momentum with respect to time, going in the same direction as the force.
Let F = force, m = mass of object, v = velocity of object, mv = momentum.
F = d/dt(mv) = m(dv / dt) = ma; a = acceleration.
Let us assume that the object starts from rest to 5 m/s within 1 seconds, hence:
F = m(dv / dt)
200 N = m[(5 m/s - 0 m/s) / (1 s)]
200 = 5m
m = 40 kg
Okay
Mr (H2O)= 18g
therefore moles of H2O
is 720.8/18= 40.04mol
the ratio of H2 to O2 to H2O is
2 : 1 : 2
so moles of H2 is same as H2O here
H2= 40.04moles
moles of O2 is half
so 40.04 x 0.5
20.02moles
grams of O2 is
its moles into Mr of O2
that's 20.02 x 32 = 640.64g
Answer:
2As2S3 + 9O2 = 2As2O3 + 6SO2
Explanation:
The balanced equation between NaOH and H₂SO₄ is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of moles of NaOH moles reacted = molarity of NaOH x volume
number of NaOH moles = 0.08964 mol/L x 27.86 x 10⁻³ L = 2.497 x 10⁻³ mol
according to molar ratio of 2:1
2 mol of NaOH reacts with 1 mol of H₂SO₄
therefore 2.497 x 10⁻³ mol of NaOH reacts with - 1/2 x 2.497 x 10⁻³ mol of H₂SO₄
number of moles of H₂SO₄ reacted - 1.249 x 10⁻³ mol
Number of H₂SO₄ moles in 34.53 mL - 1.249 x 10⁻³ mol
number of H₂SO₄ moles in 1000 mL - 1.249 x 10⁻³ mol / 34.53 x 10⁻³ L = 0.03617 mol
molarity of H₂SO₄ is 0.03617 M