Answer:
2.222 that is the answer i think might want to ask
Answer:
5 L
Explanation:
So this problem refers to Charles's law. You would use this formula..
(Initial volume / Initial Temperature) = (Final volume / Final Temperature)
For your problem, it would look like this...

You would cross multiply and your answer would be 5L.
To reassure yourself that the answer is correct, Charles law states that the Volume and the Temperature are directly proportional. Meaning if your temperature is decreasing, your volume <u>has</u> to decrease.
Answer:
Q = 4019.4 J
Explanation:
Given data:
Mass of ice = 20.0 g
Initial temperature = -10°C
Final temperature = 89.0°C
Amount of heat required = ?
Solution:
specific heat capacity of ice is 2.03 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 89.0°C - (-10°C)
ΔT = 99°C
Q = 20.0 g ×2.03 J/g.°C × 99°C
Q = 4019.4 J
The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
</span>