Answer:
4s
Explanation:
My assumption would be 4s since 25 going into 100 would be 4? hope that helped..
<span>None of the choices makes a correct statement. The third choice is close,
but misleading.
The pencil appears broken because light bends away from a straight line
when it crosses the boundary between air and water.</span>
This question is incomplete, the complete question is;
A football quarterback throws a 0.408 kg football for a long pass. While in the motion of throwing, the quarterback moves the ball 1.909 m, starting from rest, and completes the motion in 0.439 s. Assuming the acceleration is constant, what force does the quarterback apply to the ball during the pass
;
a) F_throw = 8.083 N
b) F_throw = 9.181 N
c) F_throw = 2.284 N
d) F_throw = 16.014 N
e) None of these is correct
Answer:
the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
Explanation:
Given that;
m = 0.408 kg
d = 1.909 m
u = 0 { from rest}
t = 0.439 s
Now using Kinetic equation
d = ut + 1/2 at²
we substitute
1.909 = (0 × 0.439) + 1/2 a(0.439)²
1.909 = 0 + 0.09636a
1.909 = 0.09636a
a = 1.909 / 0.09636
a = 19.8111 m/s²
Now force applied will be;
F = ma
we substitute
F = 0.408 × 19.8111
F = 8.0828 ≈ 8.083 N
Therefore the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
plasmas are a lot like gases
hope this helps.