1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
11

Discuss the environmental concerns regarding microfibre products

Engineering
1 answer:
zlopas [31]3 years ago
8 0

I don't know

Explanation:

cfffffffffggg

You might be interested in
Voltage drop testing is being discussed.
Airida [17]

Answer:

Technician B only is correct

Explanation:

Voltage drop testing is a method used to find the amount of electrical resistance available in an high amperage circuit that involves connecting the leads of the meter in parallel to the circuits being tested such that disassembly is not required

In voltage drop test, the red voltmeter lead and black voltmeter lead are placed at two points on the same side of the circuit connection such that the leads are in between two positive connection or two negative connection (rather than connecting the red to the positive and the black to the negative sides of the circuit) and digital voltmeter is used for the voltage drop measurement across the lead while the connection is under load.

Therefore, Technician B only is correct

8 0
3 years ago
Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III,
Rom4ik [11]

Answer:

See explanations for step by step procedures to get answer.

Explanation:

Given that;

Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III, and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.

4 0
4 years ago
A long, horizontal, pressurized hot water pipe of 15cm diameter passes through a room where the air temperature is 24degree C. T
solmaris [256]

Answer:

Rate of heat transfer to the room air per meter of pipe length equals 521.99 W/m

Explanation:

Since it is given that the radiation losses from the pipe are negligible thus the only mode of heat transfer will be by convection.

We know that heat transfer by convection is given by

\dot{Q}=hA(T-T_{\infty })

where,

h = heat transfer coefficient = 10.45 W/m^{2}K (free convection in air)

A = Surface Area of the pipe

Applying the given values in the above formula we get

\dot{Q}=10.45\times \pi DL\times (130+273-(24+273))\\\\\frac{\dot{Q}}{L}=10.45\times 0.15\times \pi \times (130-24)\\\\\frac{\dot{Q}}{L}=521.99W/m

5 0
3 years ago
Consider a continuous-flow, indraft supersonic wind tunnel, which uses a vacuum pump to draw atmospheric air from outside of the
BigorU [14]
I believe it’s B but I’m not sure
3 0
3 years ago
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for t
11Alexandr11 [23.1K]

Answer:   Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm

                length of the photon emitted: 6.0 m

Explanation:

The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.

Recall the Heisenberg's uncertainty principle:-

                                 ∆t∆E ≈ h ( Planck's Constant)

The transition time ∆t corresponds to the energy that is ∆E

E=h/t = \frac{(1/2\pi)*6.626*10x^{-34} J.s}{20*10x^{-9} } = 5.273*10x^{-27} J =  3.29* 10^{-8} eV.

The corresponding uncertainty in the emitted frequency ∆v is:

∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)=  7.958 × 10^6 s^-1

To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate

                                                    λ = c/v

                                                    dλ/dv = -c/v² = -λ²/c

Therefore,

      ∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)

                                 =  9.20 × 10⁻¹⁵ m or 9.20 fm

     The length of the photon (<em>l)</em> is

l = (light velocity) × (emission duration)

  = (3.0 × 10⁸  m/s)(20 × 10⁻⁹ s) = 6.0 m          

                                                   

6 0
3 years ago
Other questions:
  • A constant-head permeability test gives the following information: - Water flows horizontally through the soil sample. - The hei
    10·1 answer
  • In your Reader/Writer Notebook, write a short first-person narrative from the perspective of the bank clerk, describing her phys
    12·1 answer
  • -Mn has a cubic structure with a0 = 0.8931 nm and a density of 7.47 g/cm3. -Mn has a different cubic structure, with a0 = 0.63
    7·1 answer
  • The European Space Agency launched a probe called Rosetta in March 2004. In August​ 2014, Rosetta reached its​ destination: a co
    13·1 answer
  • Significant figures are an indicator of accuracy. a) True b) False
    8·1 answer
  • For binary flash distillation, we discussed in class that there are 8 variables (F, ZA, V, ya, L, XA, P and T) and 4 equations d
    10·1 answer
  • Dangerous of overloading in a circuit,​
    6·1 answer
  • Harmonic excitation of motion is represent as
    9·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • Binary classification algorithm
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!