This question is not complete, the complete question is;
The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005
Answer:
the length of the pipe is 11583 in or 965.25 ft
Explanation:
Given the data in the question;
Static pressure ratio; p1/p2 = 10
friction coefficient f = 0.005
diameter of pipe, D =4 inch
first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so
4fL
/ D = 57.915
we substitute
(4×0.005×L
) / 4 = 57.915
0.005L
= 57.915
L
= 57.915 / 0.005
L
= 11583 in
Therefore, the length of the pipe is 11583 in or 965.25 ft
Answer:
13.4 mm
Explanation:
Given data :
Load amplitude ( F ) = 22,000 N
factor of safety ( N )= 2.0
Take ( Fatigue limit stress amplitude for this alloy ) б = 310 MPa
<u>calculate the minimum allowable bar diameter to ensure that fatigue failure will not occur</u>
minimum allowable bar diameter = 13.4 * 10^-3 m ≈ 13.4 mm
<em>attached below is a detailed solution</em>
The FDA! (food and drug administration)