1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
4 years ago
12

Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III,

and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.

Engineering
1 answer:
Rom4ik [11]4 years ago
4 0

Answer:

See explanations for step by step procedures to get answer.

Explanation:

Given that;

Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III, and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.

You might be interested in
Valorant Or Csgo? which is best in your opinion?
SashulF [63]

Answer:

valorant valorant valorant is the best

7 0
2 years ago
Read 2 more answers
In homes today, what is behind the reason for flashover fires occurring much more rapidly than in the past generations?
garik1379 [7]

Answer:

One of the reasons why flashover fires are more prevalent today than it was in the past is that homes and furniture today are made from materials that are far more combustible than those of previous years.

Explanation:

A flashover fire is the rapid ignition and combustion of all flammable materials in an enclosed vicinity in a very short period of time.

Thirty years ago, the average escape time from a house that was on fire is about sixteen and fifty seconds...that would be approximately seventeen minutes. Presently that figure is down to four minutes.

One of the reasons identified is that the internal and external appurtenances especially furniture in use today are more combustible than those of previous years. That is, as they burn, they produce more heat and disintegrate faster.

The reason identified for this is, old houses were made of more natural materials such as real wood etc whilst the furniture and curtains in modern houses are mostly from synthetic materials.

Cheers

6 0
3 years ago
A cylindrical specimen of a metal alloy 45.8 mm long and 9.72 mm in diameter is stressed in tension. A true stress of 378 MPa ca
Sliva [168]

Answer:

390.242 MPa

Explanation:

Attached is the full solution.

8 0
3 years ago
Ethylene glycol, the ingredient in antifreeze, does not cause health problems because it is a clear liquid.
netineya [11]
B. false

Explanation: because it is
5 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Other questions:
  • The smallest crystal lattice defects is a) cracks b) point defects c) planar defects d) dislocations.
    11·1 answer
  • A shift register is a synchronous sequential circuit that will store or move data. It consists of several flip-flops, which are
    11·1 answer
  • Why dues brainy exist as a learning platform when it is just full of answers and you won't learn anything?
    8·1 answer
  • (a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd
    7·1 answer
  • Explain why the following acts lead to hazardous safety conditions when working with electrical equipmentA) Wearing metal ring o
    11·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • A 300-ft long section of a steam pipe with an outside diameter of 4 in passes through an open space at 50oF. The average tempera
    12·1 answer
  • What is the best way to collaborate with your team when publishing Instagram Stories from Hootsuite?
    14·1 answer
  • What happens to the electrolyte, during discharging?
    9·1 answer
  • What is digital communication?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!