Answer:
Yes the water will be safe at the point of cooling water discharge
Explanation:
Power losses in plant= 350- 350×0.35=227.5MW
Rate of heat rejection to stream= 0.75× 227.5= 170.625MW
Rate of heat rejection= rate of flow of water× c × ΔT
170625000= 150000000× 4.186 × (Final temperature- 20)
Final temperature= 20.3 ◦C
The final temperature of stream will be 20.3 ◦C. Thechange is very small so the minnows will be able to handle this temperature.
Answer:
a)
, b)
, c) ![T = 200.829\,^{\textdegree}F](https://tex.z-dn.net/?f=T%20%3D%20200.829%5C%2C%5E%7B%5Ctextdegree%7DF)
Explanation:
a) The tank can be modelled by the Principle of Mass Conservation:
![\dot m_{1} + \dot m_{2} - \dot m_{3} = 0](https://tex.z-dn.net/?f=%5Cdot%20m_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D%20-%20%5Cdot%20m_%7B3%7D%20%3D%200)
The mass flow rate exiting the tank is:
![\dot m_{3} = \dot m_{1} + \dot m_{2}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20%5Cdot%20m_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D)
![\dot m_{3} = 125\,\frac{lbm}{s} + 10\,\frac{lbm}{s}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20125%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%2B%2010%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D)
![\dot m_{3} = 135\,\frac{lbm}{s}](https://tex.z-dn.net/?f=%5Cdot%20m_%7B3%7D%20%3D%20135%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D)
b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:
![\dot m_{1}\cdot h_{1} + \dot m_{2} \cdot h_{2} - \dot m_{3}\cdot h_{3} = 0](https://tex.z-dn.net/?f=%5Cdot%20m_%7B1%7D%5Ccdot%20h_%7B1%7D%20%2B%20%5Cdot%20m_%7B2%7D%20%5Ccdot%20h_%7B2%7D%20-%20%5Cdot%20m_%7B3%7D%5Ccdot%20h_%7B3%7D%20%3D%200)
![h_{3} = \frac{\dot m_{1}\cdot h_{1}+\dot m_{2}\cdot h_{2}}{\dot m_{3}}](https://tex.z-dn.net/?f=h_%7B3%7D%20%3D%20%5Cfrac%7B%5Cdot%20m_%7B1%7D%5Ccdot%20h_%7B1%7D%2B%5Cdot%20m_%7B2%7D%5Ccdot%20h_%7B2%7D%7D%7B%5Cdot%20m_%7B3%7D%7D)
Properties of water are obtained from tables:
![h_{1}=180.16\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B1%7D%3D180.16%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
![h_{2}=28.08\,\frac{BTU}{lbm} + \left(0.01604\,\frac{ft^{3}}{lbm}\right)\cdot (14.7\,psia-0.25638\,psia)](https://tex.z-dn.net/?f=h_%7B2%7D%3D28.08%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%2B%20%5Cleft%280.01604%5C%2C%5Cfrac%7Bft%5E%7B3%7D%7D%7Blbm%7D%5Cright%29%5Ccdot%20%2814.7%5C%2Cpsia-0.25638%5C%2Cpsia%29)
![h_{2}=29.032\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B2%7D%3D29.032%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
The specific enthalpy at outlet is:
![h_{3}=\frac{(125\,\frac{lbm}{s} )\cdot (180.16\,\frac{BTU}{lbm} )+(10\,\frac{lbm}{s} )\cdot (29.032\,\frac{BTU}{lbm} )}{135\,\frac{lbm}{s} }](https://tex.z-dn.net/?f=h_%7B3%7D%3D%5Cfrac%7B%28125%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%29%5Ccdot%20%28180.16%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%29%2B%2810%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%29%5Ccdot%20%2829.032%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D%20%29%7D%7B135%5C%2C%5Cfrac%7Blbm%7D%7Bs%7D%20%7D)
![h_{3}=168.965\,\frac{BTU}{lbm}](https://tex.z-dn.net/?f=h_%7B3%7D%3D168.965%5C%2C%5Cfrac%7BBTU%7D%7Blbm%7D)
c) After a quick interpolation from data availables on water tables, the final temperature is:
![T = 200.829\,^{\textdegree}F](https://tex.z-dn.net/?f=T%20%3D%20200.829%5C%2C%5E%7B%5Ctextdegree%7DF)
Answer:
0.1047N
Explanation:
To solve this problem we must remember the conversion factors, remembering that 1 revolution equals 2π radians and 1min equals 60s
![N\frac{rev}{min} \frac{2\pi }{1rev} \frac{1min}{60} =N\frac{2\pi }{60} =0.1047N](https://tex.z-dn.net/?f=N%5Cfrac%7Brev%7D%7Bmin%7D%20%5Cfrac%7B2%5Cpi%20%7D%7B1rev%7D%20%5Cfrac%7B1min%7D%7B60%7D%20%3DN%5Cfrac%7B2%5Cpi%20%7D%7B60%7D%20%3D0.1047N)
in conclusion, to know how many rad / s an element rotates which is expressed in Rev / min we must only multiply by 0.1047
Answer:
The power of force F is 115.2 W
Explanation:
Use following formula
Power = F x V
= F cos0
= (30) x 4/5
= 24N
Now Calculate V using following formula
V =
+ at
= 0
a =
/ m
a = 24N / 20 kg
a = 1.2m / ![S^{2}](https://tex.z-dn.net/?f=S%5E%7B2%7D)
no place value in the formula of V
V = 0 + (1.2)(4)
V = 4.8 m/s
So,
Power =
x V
Power = 24 x 4.8
Power = 115.2 W
Glyphicons are icon fonts which you can use in your web projects. Glyphicons Halflings are not free and require licensing, however their creator has made them available for Bootstrap projects free of cost.