Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97
That 1 mole of Silicon weighs 28.0855 g. Therefore, 28.0855 g of Silicon contains 6.022×1023 of Silicon atoms. hope this helps :)
It is not equal because it dose not obey the conservation of mass. 60+25= 85 not 75.
Hello :)
Based on the information I received reading the picture, the answer should be “B”
Explanation: if I am wrong I’m very sorry. But that should be the answer
Answer:
Highest pH(most basic)
Sr(OH)2(aq)
KOH (aq)
NH3(aq)
HF (aq)
HClO4(aq)
Lowest pH(most acidic)
Explanation:
The concentration of H+ ion will determine the pH of a solution. The pH actually reflects the ratio of H+ ion and OH- since both of them can combine into water. Solution with more H+ ion will have a lower pH and called acidic, while more OH- will have high pH and be called basic. Strong acid/base will be ionized more than weak acid/base.
Sr(OH)2(aq) = strong base, release 2 OH- ion per mole
KOH (aq) = Strong base, release 1 OH- per mole
NH3(aq) = weak base, release less than 1 OH- per mole
HF (aq) =strong acid, release 1 H+ per mole
HClO4(aq) = stronger acid, release 1 H+ per mole