There are 4 questions related to this problem:
1 If the half-life of the drug is 7.3 hours, what fraction of the drug remains in the patient after 24 hours?The amount of the drug is halved every 7.3-hour period, and 24 hours equals 24/7.3 of these halving periods.
So the portion of the drug left over after 24 hours is (1/2) ^ (24/7.3) = 0.10224 2 Write a general expression for the amount of the drug in the patient immediately after taking the nth dose of the drug
One method is to combine the residual amounts from each amount, when the nth dose arises; this will contain adding a finite geometric series
So the total amount of the drug immediately after the nth dose, in mg, is An = 40+ 40(0.10224) + 40(0.10224)^2 + ... + 40(0.10244)^(n-1)
An = 40[1 - (0.010224)^n]/(1 - 0.10224)
3 Write a broad expression for the quantity of the drug in the patient directly before taking the nth dose of the drug
Pn = An – 40
= 40(0.10224) + 40(0.10224)^2 + ... + 40(0.10244)^(n-1)
= 40(0.10224) [1 - (0.10224)^(n-1)]/(1 – 0.10224)
= 4.0895 [1 - (0.10224)^(n-1)]
4 What is the long-term minimum amount of drug in the patient?
= lim n-->infinity of Pn
= lim n-->infinity of 4.0895[1 - (0.10224)^(n-1)]
= 4.0895(1 - 0)
= 4.0895 mg.
It is often revealed <span>at the resolution of the story, when the reader can see how the story ends.</span>
Answer:
<h3>76.3 kg</h3>
Explanation:
<h3>this is my week answer</h3>
Active Optics.
Hope that helps, Good luck! (:
Answer: Scattering reflection
Sunlight reaches earth's atmosphere and is scattered in all directions by all the gasses and particles in the air. Blue light is seen more than others because it travels as shorter, smaller waves. This is why we see a blue sky most of the time.
Explanation: