Answer:
a. a = 1, b = -5, c = -14
b. a = 1, b = -6, c = 9
c. a = -1, b = -1, c = -3
d. a = 1, b = 0, c = -1
e. a = 1, b = 0, c = -3
Step-by-step explanation:
a. x-ints at 7 and -2
this means that our quadratic equation must factor to:

FOIL:

Simplify:

a = 1, b = -5, c = -14
b. one x-int at 3
this means that the equation will factor to:

FOIL:

Simplify:

a = 1, b = -6, c = 9
c. no x-int and negative y must be less than 0
This means that our vertex must be below the x-axis and our parabola must point down
There are many equations for this, but one could be:

a = -1, b = -1, c = -3
d. one positive x-int, one negative x-int
We can use any x-intercepts, so let's just use -1 and 1
The equation will factor to:

This is a perfect square
FOIL:

a = 1, b = 0, c = -1
e. x-int at 
our equation will factor to:

This is also a perfect square
FOIL and you will get:

a = 1, b = 0, c = -3
Answer:
.65
Step-by-step explanation:
Have you ever given up working on a math problem because you couldn’t figure out the next step? Wolfram|Alpha can guide you step by step through the process of solving many mathematical problems, from solving a simple quadratic equation to taking the integral of a complex function.
When trying to find the roots of 3x2+x–7=4x, Wolfram|Alpha can break down the steps for you if you click the “Show steps” button in the Result pod.
2.75 as a fraction is 25/100 then you divided which you get 11/4 which is 2 3/4 so 2 3/5 is more hope that helped
If you are asking to simplify, this is what I got. Hope I was able to help
First find the total payments
Total paid
200×30=6,000 (this is the future value)
Second use the formula of the future value of annuity ordinary to find the monthly payment.
The formula is
Fv=pmt [(1+r/k)^(n)-1)÷(r/k)]
We need to solve for pmt
PMT=Fv÷[(1+r/k)^(n)-1)÷(r/k)]
PMT monthly payment?
Fv future value 6000
R interest rate 0.09
K compounded monthly 12
N=kt=12×(30months/12months)=30
PMT=6000÷(((1+0.09÷12)^(30)
−1)÷(0.09÷12))
=179.09 (this is the monthly payment)
Now use the formula of the present value of annuity ordinary to find the amount of his loan.
The formula is
Pv=pmt [(1-(1+r/k)^(-n))÷(r/k)]
Pv present value or the amount of his loan?
PMT monthly payment 179.09
R interest rate 0.09
N 30
K compounded monthly 12
Pv=179.09×((1−(1+0.09÷12)^(
−30))÷(0.09÷12))
=4,795.15
The answer is 4795.15