<span>After many experiments and many different approaches to the question, the scientist may be able to develop a theory. The theory explains why nature behaves in the way described by the natural law. It answers not only the original question, but also any other questions that were raised during the process. The theory also predicts the results of further experiments, which is how it is checked. Theories are not the end of the process.</span>
Answer:
Option A - When |ΔHsolute| > |ΔHhydration|
Explanation:
A solution is defined as a homogeneous mixture of 2 or more substances that can either be in the gas phase, liquid phase, solid phase.
The enthalpy of solution can either be positive (endothermic) or negative (exothermic).
Now, we know that enthalpy is amount of heat released or absorbed during the dissolving process at constant pressure.
Now, the first step in thus process involves breaking up of the solute. This involves breaking up all the intermolecular forces holding the solute together. This means that the solute molecules are separate from each other and the process is always endothermic because it requires energy to break interaction. Thus;
The enthalpy ΔH1 > 0.
Thus, the enthalpy of the solute has to be greater than the enthalpy of hydration.
Answer:
I dont know at all and that is confusing.
Answer: 3.5 moles
Explanation:
For every 2 moles of sulfur consumed, there are 3 moles of oxygen consumed.
This means that sulfur is the limiting reactant, meaning that 2(3)=6 moles of oxygen will be consumed.
Thus, 9.5-6=3.5 moles of oxygen will remain.
2000/18 =111.111111
111.1 moles