Answer:
Option B

Explanation:








Centripetal acceleration 
Tangential component=dr=2*1.75=3.5

Answer:
1. Industrial revolution was initiated or borne through the production of Steel
2. World War 1 led to the development of Tanks
Explanation:
The production of Steel through the Bessemer Process in the middle of the nineteenth century was a major technological development that spurred the Industrial revolution. This invention led to the widespread use of steel in the production of many things including vehicles and airplanes.
During the First World War in 1914, soldiers found the use of just their armaments in battle as not so productive. This led to the development of Tanks in 1915 that would continue moving towards the enemy even when being shot at.
Answer:
a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s
Explanation:
Diffusion is governed by Arrhenius equation

I will be using R in the equation instead of k_b as the problem asks for molar activation energy
I will be using

and
°C + 273 = K
here, adjust your precision as neccessary
Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm
So:

and

You might notice that these equations have the form of

You can solve this equation system easily using calculator, and you will eventually get

After you got those 2 parameters, the rest is easy, you can just plug them all including the given temperature of 1180°C into the Arrhenius equation

And you should get D = 2.76*10^-16 m^/s as an answer for c)
Answer:
Return the total population of all cities in the list.
Explanation:
It is for every element in cityinfo. It works not only for one array but multiple.
I attached the document with the code or function with the name import cvs becuase when I wrote it down and it sent a message written on red about inappropriate words.
Answer:
I'm going to make a list of everything you need to consider for the supervision and design of the bridge.
1. the materials with which you are going to build it.
2. the length of the bridge.
3. The dynamic and static load to which the bridge will be subjected.
4. How corrosive is the environment where it will be built.
5.wind forces
6. The force due to possible earthquakes.
7. If it is going to be built in an environment where snow falls.
8. The bridge is unique,so the shape has a geometry that resists loads?.
9. bridge costs.
10. Personal and necessary machines.
11. how much the river grows